COX2 is involved in hypoxia-induced TNF-α expression in osteoblast

نویسندگان

  • Yonggang Xing
  • Renxian Wang
  • Dafu Chen
  • Jianping Mao
  • Rui Shi
  • Zhihong Wu
  • Jun Kang
  • Wei Tian
  • Chi Zhang
چکیده

Bone regeneration involves a series of events in a coordinated manner, including recruitment of mesenchymal stem cells, induction of immune response, inflammatory activity and vascular ingrowth. The microenvironment of bone regeneration is hypoxic. Low oxygen tension (hypoxia) promotes the upregulation of several signaling molecules. The primary mediating factor is the hypoxia-inducible factor-1 (HIF-1). Hypoxia stimulates the expression of a variety of cytokines from inflammatory cells, fibroblasts, endothelial cells, and osteoblasts. TNF-α is a key proinflammatory cytokine. The molecular events involved in osteoblast dysfunction under hypoxia are not fully understood. This study determined the effects of hypoxia on TNF-α in osteoblasts, and molecular mechanisms were explored. We observed that hypoxia induced TNF-α expression in a time-dependent manner in osteoblasts. Experiments using a potent HIF-1α activator DFO demonstrated that hypoxia-induced TNF-α was mediated by HIF-1-α. In addition, this study showed that hypoxia activated cyclooxygenase-2 (COX2) expression along with TNF-α. Inhibition experiments using COX2 inhibitor N398 indicated that COX2 was involved in hypoxia-mediated TNF-α expression, and this observation was further confirmed by Small interfering RNA against COX2. On the other hand, TNF-α didn't lead to the activation of COX2 expression. We conclude that COX2 is involved in hypoxia-induced TNF-α expression in osteoblast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats

Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...

متن کامل

The Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats

Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Peroxisome proliferator-activated receptor activity is involved in the osteoblastic differentiation regulated by bone morphogenetic proteins and tumor necrosis factor-α.

Recent studies have suggested possible adverse effects of thiazolidinediones on bone metabolism. However, the detailed mechanism by which the activity of PPAR affects bone formation has not been elucidated. Impaired osteoblastic function due to cytokines is critical for the progression of inflammatory bone diseases. In the present study, we investigated the cellular mechanism by which PPAR acti...

متن کامل

TNF-α inhibits SATB2 expression and osteoblast differentiation through NF-κB and MAPK pathways

Although the mechanisms of Tumor necrosis factor alpha (TNF-α) on facilitating osteoclast differentiation and bone resorption is well known, the mechanisms behind the suppression of the osteoblast differentiation from mesenchymal stem cells (MSCs) are still poorly understood. In this study, we observed a negative correlation between TNF-α levels and the expression of special AT-rich sequence-bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015